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1. INTRODUCTION 
 
 With constantly increasing horizontal 
resolution, numerical weather prediction 
models are approaching limits of validity of 
the hydrostatic approximation.  Although 
considerable experience with nonhydrostatic 
models has been accumulated on the scales of 
convective clouds and storms, numerical 
weather prediction (NWP) deals with motions 
on a much wider range of temporal and spatial 
scales.  Difficulties that may not be 
significant, or may go unnoticed on the small 
scales, may become important in NWP 
applications.  For example, an erratic gain or 
loss of mass would be hard to tolerate in an 
operational environment.  Problems may also 
arise with spurious motions generated in the 
upper levels by the nonhydrostatic dynamics 
and numerics.  Forcing the variables in the top 
model layers toward a steady state in response 
to this problem is inadequate for NWP, and, 
on the other hand, specifying time dependent 
computational top boundary conditions would 
limit the ability of the nested model to 
produce more accurate forecasts than the 
parent model. 
 Having in mind these considerations, a 
novel approach (Janjic et al., 2001; Janjic, 
2003) has been applied in the NCEP 
Nonhydrostatic Meso Model (NMM) that has 
been developed within the Weather Research 
and Forecasting (WRF) initiative.  Namely, 
instead of extending cloud models to larger 
spatial and temporal scales, the hydrostatic 
approximation is relaxed in a hydrostatic 
model formulation based on modeling 
principles proven in NWP practice.  These 
principles have been set up by Janjic (1977, 
1979, 1984) and have been applied and 
thoroughly tested in NWP and regional 
climate applications of the NCEP Eta model.  
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By relaxing the hydrostatic approximation the 
applicability of the hydrostatic formulation is 
extended to nonhydrostatic motions, and at the 
same time the favorable features of the 
hydrostatic formulation are preserved.  In 
other words, following an evolutionary 
approach, the nonhydrostatic NWP model is 
built on NWP experience. 
 With this approach the nonhydrostatic 
equations are split into two parts: (a) the part 
that corresponds to the hydrostatic system, 
except for corrections due to the vertical 
acceleration, and (b) the part that allows 
computation of the corrections appearing in 
the first system.  The described procedure 
does not require any linearization or additional 
approximation.  Note that the separation of the 
nonhydrostatic terms shows in a transparent 
way where, how and how much the 
hydrostatic approximation affects the 
equations.  Moreover, the nonhydrostatic 
effects are introduced in the form of an add–
on nonhydrostatic module that can be turned 
on or off depending on model resolution.  In 
this way the nonhydrostatic model can be run 
in the hydrostatic mode at lower resolutions 
with no extra cost. 
 
2. MODEL EQUATIONS 
 
 For simplicity, as a representative of mass 
based vertical coordinates, consider the sigma 
coordinate (Phillips, 1957) 
 

  
µ
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where π  is the hydrostatic pressure, and µ  
represents the difference in hydrostatic 
pressure between the base and the top of the 
model column 
 
  ts ππµ -= . (2.2) 
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Here, s and t  stand for the hydrostatic 
pressures at the surface and at the top of the 
model atmosphere.  Then, the equations 
governing a dry, inviscid and adiabatic 
nonhydrostatic atmosphere are (Janjic et al., 
2001; Janjic 2003) 

π π

 

  vkv
×+∇−∇+−= fp

dt σσ αΦε)1(d , (2.3) 

 

  
)(

  

σ
σα

σ
σ

σ

σ

∂
∂

+∇+
∂
∂

+

∂
∂

−∇−
∂

•

•

pp
t
p

c

TT=
t
T

p
&

&

v

v
∂

, (2.4) 

 

  '(0 ]dσ
σ

)σ(µ)µ[
t
µ σ

σ ∂
∂

+⋅∇−=
∂
∂

∫
&

vσ , (2.5) 

 
  , (2.6) RTp =α
 

  α
σµ

−=
∂
∂Φ1 , (2.7) 

 

  )(1
σ

σ
tg ∂

∂
+∇+

∂
∂

= •
ΦΦΦ

σ &vw , (2.8) 

 

  
dt
dw

g
1

≡ε , (2.9) 

 

  ε
π

+=
∂
∂ 1p . (2.10) 

 
Here, in the order of appearance,  is the 
horizontal wind vector, 

v
p  is the actual, 

nonhydrostatic pressure, R  is the gas constant 
for dry air, T  is temperature and Φ  is 
geopotential.  The other symbols used have 
either their usual meaning, or their meaning is 
self-evident.  Note that Φ , , and  are not 
independent variables. 

w ε

 The parameter ε  is the central point of the 
extended, nonhydrostatic dynamics.  As can 
be readily verified, if  is zero, the equations 
(2.3)-(2.7) reduce to the familiar, hydrostatic 
system of equations.  On the synoptic scales  
is small and approaches computer round–off 
error.  However, in case of vigorous 

convective storms, or strong vertical 
accelerations, can reach 10

ε

ε

ε -3.  For this value 
of  the nonhydrostatic deviation of pressure 
can reach 100 Pa.  Bearing in mind that the 
typical synoptic scale horizontal pressure 
gradient is of the order of 100 Pa over 100 
km, this suggests that significant local 
nonhydrostatic pressure gradients and 
associated circulations may develop on small 
scales.  Nevertheless,  remains much smaller 
than 1 in atmospheric flows, and therefore, the 
nonhydrostatic effects are of a higher order 
magnitude.  An important consequence of this 
situation for discretization is that high 
accuracy of computation of  does not appear 
to be of paramount importance, considering 
that the computational errors are of an even 
higher order than ε  itself. 
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 The method of solving of the considered 
system of nonhydrostatic equations is 
presented in more detail in Janjic et al. (2001).  
Further details and updates are presented in 
Janjic (2003).  Here, only the basic principles 
of the discretization will be reviewed together 
with some additional updates, and the reader 
is referred to the quoted papers for details. 
 
3. CLASSICAL NONHYDROSTATIC 
 SOLUTIONS 
 
 In order to test the validity of the approach 
in the limit of highly nonhydrostatic flows, a 
two-dimensional model in the vertical plane 
was developed and run in a series of classical 
nonhydrostatic tests (Janjic et al., 2001).  As 
usual for these scales, the Coriolis force was 
neglected.  As examples, some of the results 
obtained in the cold and warm bubble tests 
(Janjic et al. 2001) will be reproduced here.  
For more details about these and other tests 
the reader is referred to Janjic et al. (2001). 
 Following Straka et al. (1993), in a 
neutrally stratified atmosphere with the 
potential temperature of 3000K, an initial cold 
disturbance of the form 
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was introduced, where 
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The integration domain extended 40 km in the 
x direction, and the free surface was located at 
442 hPa, or about 6400 m.  The center of the 
initial disturbance was in the middle of the 
domain in the x direction, 20 km away from 
either of the lateral boundaries.  As in the 
main test in the Straka et al. (1993) study, the 
horizontal resolution was 100 m, and the 
vertical resolution was 100 m on the average.  
The time step was 0.3 s. 
 The potential temperatures after 300 s, 600 
s and 900 s are displayed in Fig. 1.  The area 
shown in the figure extends from the center of 
the domain to 19200 m to the right, and from 
the surface to 4600 m.  The contour interval is 
10 K.  Comparison of the results obtained in 
this test (Janjic et al., 2001) with the Straka et 
al. (1993) converged reference solution 
reveals very good agreement. 
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Fig. 1.  The cold bubble test.  Potential 
temperatures after 300 s, 600 s and 900 s in 
the right hand part of the integration domain 
extending from the center to 19200 m, and 
from the surface to 4600 m.  The grid size is 

100 m and s.  The contour 
interval is 1

=≈ xz ∆∆ 3.0=t∆
0 K. 

 
 It should be noted that hydrostatic 
dynamics was unable to reproduce the results 
shown in Fig. 1 (Janjic et al., 2001).  The 
hydrostatic solution was computationally 
unstable unless the lateral diffusion was 

increased by an order of magnitude.  In that 
case, however, only very crude, qualitative 
resemblance to the nonhydrostatic solution 
was preserved. 
 The warm bubble test was designed 
following Gallus and Rancic (1996).  In a 
neutral atmosphere with the potential 
temperature of 3000K, an initial disturbance of 
the potential temperature 
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was introduced, where 
 
  0=cx  m, m, 2750=cz
  2500=tx  m, m. 2500=tz
 
The integration domain extended 20 km in the 
x direction.  The free surface was located at 
135 hPa, or at about 13500 m.  The center of 
the initial disturbance was in the middle of the 
domain in the x direction, i.e., 10 km away 
from either of the lateral boundaries.  The 
horizontal resolution was 100 m, and the 
vertical resolution was 100 m on the average.  
The time step with this spatial resolution was 
0.3 s as before. 
 The potential temperature deviations after 
360 s, 540 s, 720 s and 900 s are presented in 
Fig. 2.  The area shown extends 16 km along 
the x axis, and from 1000 m to 13200 m along 
the z axis.  The contour interval is 10K.  The 
rate of ascent and the intensity of the 
disturbance agree with those reported 
elsewhere. 
 
4. HORIZONTAL GRID AND 
 HORIZONTAL COORDINATES 
 
 The choice of the horizontal grid is one of 
the first decisions that need to be made in the 
process of designing a numerical model of the 
atmosphere.  Winninghoff (1968) and 
Arakawa and Lamb (1977) examined the 
frequencies of gravity-inertia waves obtained 
using second-order centered differences on  
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Fig.  2.  The potential temperature deviation 
after 360 s, 540 s, 720 s and 900 s (from top to 
bottom) in the warm bubble test.  The area 
shown extends 16 km along the x axis, and 
from 0 m to 13200 m along the z axis.  The 
contour interval is 1 K0 . 

various types of rectangular horizontal grids.  
Compared to other grids considered, in these 
studies generally better agreements with the 
exact frequencies were obtained on the 
staggered grid C and on the semi-staggered 
grid B (or E) shown in Fig. 3.  The symbol h 
 

 
 
Fig. 3.  The staggered grid C and the semi-
staggered grids B, E and Z.  
 
in the figure denotes the mass point variables, 
while the horizontal velocity vector and the 
velocity components are denoted, 
respectively, by v, u and v.   
 However, the staggered grid and the semi-
staggered grids are not without problems, 
either.  The problems on the staggered grid 
arise due to the averaging of the velocity 
components in the Coriolis force terms.  On 
the other hand, in order to illustrate the 
problems on the semi-staggered grids, 
consider the linearized shallow water 
equations 
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Here, u and v are the velocity components, h 
is the height of the free surface, g is gravity, f 
is the Coriolis parameter assumed to be 
constant, and H is the mean depth of the fluid.  



The other symbols used have their usual 
meaning.  The system (4.1) discretized in the 
most straightforward way, e.g., on the B grid, 
has the form 
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In (4.2), the symbol δ and the overbar, 
respectively, represent the simplest two-point 
centered differencing and averaging operators 
applied in the direction indicated by the 
accompanying subscript or superscript.  
Following Janjic (1984), the velocity 
components on the B grid may be written in 
terms of the velocity potential χ and the 
stream function ψ in the form 
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Then, after substituting the expressions (4.3) 
into the system (4.2), and rearrangement, one 
obtains 
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where repeated subscripts and superscripts 
indicate repeated applications of the operators 
they are accompanying.  As can be seen from 
(4.4), the only possible reason for the B grid 
problems is the insufficiently accurate 
computation of the Laplacian due to the 
averaging of the derivatives of the velocity 
potential χ in the continuity equation.  An 
inspection of the finite difference equations 
(4.4) reveals that they are defined on a 
nonstaggered grid, carrying all three variables 
χ, ψ and  at each grid point (Janjic 1984).  
This type of grid is also shown in Fig. 3.  It 
was named Z grid by Randall (1994).  Thus, 
the B grid, together with the definitions (4.3), 
is equivalent to the Z grid (Gavrilov, 2004).  
However, there is an important difference 
between the simulation of the gravity-inertia 
wave propagation on the grids B and Z.  On 

the Z grid, the continuity equation can be 
written in the form 

h
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without the averaging in the divergence term 
that was responsible for the B grid problems.  
However, an application of the Z grid in case 
of more complex equations would require 
costly conversions between the velocity 
components and the velocity potential and the 
stream function.  A more complete 
comparison of the properties of the remaining 
two possibilities, the staggered grid C and the 
semi-staggered grids B and E can be found, 
e.g., in Janjic and Mesinger (1984, 1989).  
These considerations, however, do not give 
decisive advantage to either of the two 
choices.  The problems on the semi-staggered 
grids B and E are restricted mainly to the 
shortest waves, while in the case of the slow 
internal modes, and/or weak stability, the C 
grid may develop problems in the entire range 
of the admissible wave numbers (Arakawa 
and Lamb, 1977).  In addition, there is an 
effective technique for filtering the low 
frequency, short-wave noise resulting from the 
inaccurate computation of the divergence term 
on the semi-staggered grids (Janjic, 1979).  
More sophisticated, nondissipative methods 
(“deaveraging” and “isotropisation”) for 
dealing with the problem also have been 
proposed (Janjic et al., 1998), leading to 
dramatic improvements of the finite-
difference frequencies of the short gravity-
inertia waves on the semi-staggered grids. 
 The results discussed so far are relevant 
for classical synoptic scale models.  In order 
to address the question of the choice of the 
horizontal grid as the mesoscales are 
approached, the linearized anelastic 
nonhydrostatic system is a better starting point 
than the linearized shallow water equations 
(4.1) (communicated by Klemp, 1997; Janjic, 
2003).  As before, the problems with the 
anelastic system on the B grid are mainly due 
to the averaging within the divergence term, 
and on the C grid mainly due to the averaging 
of the Coriolis force.  For example, if the ratio 
between the horizontal grid size and the 
vertical grid size is 30, , the Brunt-
Vaisala frequency is , and the 

0001.0=f
0001.0=N



wavelength in the vertical is 32 grid intervals, 
the true relative frequency , and the 
relative frequency on the B grid, are both 
equal to unity throughout the admissible wave 
number range.  On the other hand, as can be 
seen from Fig. 4, with the same values of the 
parameters, the relative frequency on the C 
grid is not a constant.  This leads to a nonzero 
group velocity throughout the admissible 
wave-number range, including the longest 
waves.  For more details concerning this 
example, the reader is again referred to Janjic 
(2003). 
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Fig. 4.  The ratio υ as a function of wave 
number. 
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 On the other hand, the example shown in 
Fig. 5 indicates how bad the problem can be 
on the B grid.  The two 24 hour sea level 
pressure forecasts shown in the figure were 
computed using 30 km horizontal resolution 
and very light dissipation.  The contour 
interval was set to 1 hPa in order to 
emphasize the noise that might develop.  The 
forecast in the upper panel was obtained doing 
nothing to alleviate the B grid problem, while 
the forecast in the lower panel was obtained 
using well converged “deaveraging” (Janjic et 
al., 1998) which substantially improves the 
frequencies of the gravity-inertia waves on the 
B grid.  As can be seen comparing the 
forecasts in the upper panel and in the lower 
panel, the presence of the problem cannot be 
visually detected.  The forecast in the upper 
panel generally is not noisier than the forecast 
in the lower panel.  This result appears to be 
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Fig. 5.  Examples of 24 hour forecasts of the 
sea level pressure on the B grid without any 
control of the grid separation problem (upper 
panel) and with deaveraging (lower panel).  
The contour interval is 1 hPa. 
 
in conflict with an earlier result (Janjic, 1979).  
However, in the earlier test the horizontal 
resolution was 160 km, so that the advection 
had a lesser effect in providing 
communication between the grid points than 
in the current test with the 30 km resolution. 
 Since the problems on the semi-staggered 
grid B are restricted to the shortest resolvable 
scales, and they are less sensitive to the 
stability and the choice of the vertical and 
horizontal grid sizes, the preference was given 
to the semi-staggered grids.  For historical 
reasons, the E grid is used in the initial version 
of the NCEP Nonhydrostatic Meso model, 
although a B grid version (NMM-B) with 
identical properties also exists (Janjic, 2003). 
 The longitude-latitude coordinates are 
rotated in the model in such a way that the 



coordinate origin is located in the middle of 
the integration domain.  In this way, the 
reduction of the longitudinal grid-size is 
minimized as the southern and the northern 
boundaries of the integration domain are 
approached, and, therefore, longer time steps 
can be used. 
 
5. VERTICAL COORDINATE AND 
 VERTICAL STAGGERING 
 
 By far the most widely used method for 
representing topography are terrain following 
coordinates such as the sigma coordinate 
(Phillips, 1957), or its extensions such as the 
hybrid sigma-pressure coordinate of Arakawa 
and Lamb (1977), or the hybrid eta coordinate 
of Simons and Burridge (1981).  A rare 
exception has been the step-mountain 
blocking used in the NCEP Meso (Eta) model.  
This technique was originally proposed by 
Bryan (1969), and subsequently widely used 
in oceanography.  Mesinger et al. (1988) 
implemented this technique in a sigma 
coordinate atmospheric model.  Yet another 
approach coming from oceanography is the 
shaved cell method (e.g. Adcroft et al. 1997).  
Steppeler et al. (2002) reported a successful 
application of this approach in the dynamics 
of the Local Model (LM) of the German 
Weather Service. 
 The advantage of the step-like mountain 
blocking is that the coordinate surfaces are 
quasi-horizontal.  This, however, is not 
without consequences.  For example, internal 
discontinuities are introduced at the vertical 
sides of the steps that replace the mountain 
slopes, and lateral boundary conditions are 
required at these discontinuities.  The formal 
accuracy of the finite-differences at the points 
next to the internal boundaries is reduced to 
the first order.  In addition, if the no slip 
boundary conditions are used in order to 
preserve the major favorable features of the 
finite-differencing schemes (Janjic, 1977, 
1979, 1984), a nonphysical sink of momentum 
is introduced.  Yet another problem is the 
representation of the physical processes in the 
surface layer and the planetary boundary layer 
(PBL).  If one wants to represent these 
processes in a reasonably uniform way 
throughout the integration domain, including 
both low-lying and elevated terrain, an 

approximately equidistant spacing of the 
vertical levels is required in the lower few 
kilometers of the atmosphere.  However, the 
vertical resolution needed in order to achieve 
this goal is still too high.  In addition, several 
recent studies (Adcroft et al, 1997; Gallus, 
2000; Gallus and Klemp, 2000; Janjic and 
DiMego, 2001; Gavrilov, 2002) indicate that 
more problems should be expected at higher 
resolutions.   
 The shaved cell approach has problems 
associated with complex lower and internal 
boundary conditions.  In addition, as with the 
step-mountains, the vertical resolution is 
reduced over elevated terrain which poses 
additional problems for physical 
parameterizations. 
 Thus, despite of all its imperfections, the 
terrain-following hybrid pressure-sigma 
vertical coordinate (Arakawa and Lamb, 
1977) has been chosen as the best compromise 
(Janjic, 2003).  With the hybrid coordinate, 
the coordinate surfaces are flat above and 
away from the mountains.  Over the 
mountains the hybrid coordinate has increased 
vertical resolution, and the equations are 
continuous, without the computational internal 
boundary conditions.  Since the hydrostatic 
pressure is currently used as the vertical 
coordinate above 400 hPa, the possible 
inaccuracies due to the sloping coordinate 
surfaces are restricted only to about the lower 
half of the mass of the atmosphere.  Note that, 
generally, largest errors in the sigma 
coordinate occur in the stratosphere.  Thus, 
with the hybrid coordinate, the most serious 
problems associated with the sloping sigma 
surfaces are eliminated.  In addition, the 
increased resolution presumably acts in the 
direction of reducing the computational 
inaccuracies, and certainly improves the 
representation of the vertical structure of the 
PBL over elevated terrain. 
 The usual, Lorenz vertical staggering of 
the variables is used in the vertical (Janjic, 
1977).  The geopotential and the 
nonhydrostatic pressure are defined at the 
interfaces of the layers, while all three 
velocity components and temperature are 
carried in the middle of the model layers.  The 
vertical velocity is defined at the E grid mass 
points. 
 



6. SPATIAL DISCRETIZATION 
 
 The basic discretization principles applied 
in the NMM, and thoroughly tested in NWP 
applications in its hydrostatic predecessors the 
Eta and the HIBU models, have been (Janjic, 
1977, 1984): 
 
● Conservation of selected integral 
properties, and in particular, following 
Arakawa, the control over the nonlinear 
energy cascade by the conservation of energy 
and enstrophy in case of nondivergent flow; 
● Cancellation of the contributions of the 
pressure gradient force and the ωα  term of the 
thermodynamic equation to the total energy 
generation, and consequently consistent 
transformation between the kinetic and 
potential energy; and 
● Minimization of the errors due to sloping 
sigma surfaces. 
 
 Although designed following the same 
general principles, the specific numerical 
schemes employed evolved significantly over 
time and over about two orders of magnitude 
in horizontal resolution.  For example, the 
problem of the sloping sigma surfaces was 
first addressed by using the Janjic (1977) 
method for minimization of the pressure 
gradient force errors, then by the step-
mountain blocking (Mesinger et al., 1988) in 
the Eta model, and finally by the already 
discussed hybrid pressure-sigma coordinate 
(Arakawa and Lamb, 1977) in the NMM.  The 
treatment of the  term has certainly played 
an important role in the treatment of 
orography as well (Janjic, 1977).  Yet, perhaps 
the most significant upgrade was the 
introduction of the new schemes for 
calculating the contribution of the nonlinear 
advection terms and the horizontal divergence 
operators (Janjic, 1984).  In the current model 
formulation, all divergence operators are 
computed using the fluxes between each point 
and its eight nearest neighbors.  This, 
“isotropic”, divergence operator is used in the 
Arakawa Jacobian, but also in the hydrostatic 
continuity equation in order to compute the 
divergence of mass. Properties of the 
momentum advection scheme were examined 
in more detail by Gavrilov and Janjic (1989).   

ωα

 In the case of rotational flow and cyclic 
boundary conditions, the scheme for 

horizontal advection of momentum on the E 
grid conserves the following properties: 
 
- Enstrophy as defined on the staggred grid 
C (i.e. using the most compact second-order 
approximation of the Laplacian in order to 
compute vorticity), 
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- Rotational kinetic energy as defined on the 
staggered grid C, 
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- Rotational momentum as defined on the 
staggered grid C, 
- Rotational kinetic energy as defined on the 
semi-staggered grid E, 
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- Rotational momentum as defined on the 
semi-staggered grid E. 
 
 The Z grid equivalent of the E grid used to 
define the quantities (6.1)-(6.3) is shown in 
Fig. 6 together with the orientation of the 
coordinate axes x,y and x’,y’ appearing in  
 

 
Fig. 6.  The Z grid equivalent of the E grid.  
Orientations of the coordinate axes x,y and 
x’,y’ are indicated. 



(6.1)-(6.3).  As before, φ and ψ are the 
velocity potential and the stream function, 
respectively, and h stands for mass point 
variables.  The symbol  denotes the area of 
the grid boxes, and the summation sign with 
the subscripts i,j represents the summation in 
the horizontal. 

A∆

 
 In case of general flow, the scheme 
conserves: 
 
- Kinetic energy as defined on the semi-
staggered grid E 
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- Momentum as defined on the semi-
staggered grid E. 
 
In (6.4), the summation sign indicates the 
summation over all grid points, and the 
symbol  denotes the grid box volume in 
hydrostatic vertical coordinates.  The scheme 
for horizontal advection of temperature also 
conserves the first and the second moments of 
temperature.   

V∆

 Two options are available in the model for 
dealing with the problem of the semi-
staggered grids with the frequencies of the 
short gravity-inertia waves.  The first one is 
the selective filtering technique developed by 
Janjic (1979).  The second one is the 
deaveraging technique proposed by Janjic et 
al. (1998).  The deaveraging is 
computationally very efficient and requires 
only few simple iterations on the hydrostatic 
pressure tendency.  Although the deaveraging 
is non-dissipative, and therefore physically 
better founded, the dramatic improvement of 
the frequencies of the shortest gravity-inertia 
waves achieved on the semi-staggered grids 
requires that the time step be significantly 
reduced which leads to reduced computational 
efficiency of the model.  Thus, it is not 
obvious which of the two options should be 
given preference in practical NWP 
applications, particularly in the light of the 
situation shown in Fig. 5. 
 Concerning the vertical discretization of 
the basic dynamical variables, quadratic 
conservative vertical advection is used.  In 
addition to the material surface boundary 

conditions requiring that the total derivative of 
the vertical coordinate (vertical velocity) be 
equal to zero at the top and at the bottom of 
the model’s atmosphere, vertical boundary 
conditions are needed also for the 
nonhydrostatic deviation of pressure.  It is 
assumed that the nonhydrostatic pressure 
deviation vanishes at the top of the 
atmosphere, while its vertical derivative 
vanishes at the bottom (Janjic et al., 2001). 
 The centered conservative schemes used 
for advection of the basic dynamic variables 
develop well known problems in case of 
advection of positive definite scalars with 
large spatial variation, such as specific 
humidity, cloud water, or turbulence kinetic 
energy.  For this reason, an upgraded version 
of the scheme used for advection of passive 
substances in the NCEP Eta model (Janjic, 
1997) is applied.  The scheme consists of 
three steps.  In the first step an upstream 
biased scheme is used to advect the passive 
substance.  In the second step, antifiltering is 
applied, with antifiltering parameters 
optimized in such a way as to minimize 
computational dispersion in sheared flows.  
Finally, in the third step, forced conservation 
of the advected quantity is imposed.  The 
scheme appears to be a reasonable 
compromise between the requirements for 
accuracy and computational efficiency. 
 
7. TIME DIFFERENCING 
 
 Following again the same proven 
principles for discretization in time as in its 
hydrostatic predecessors (Janjic, 1979), the 
hydrostatic core of the equations (2.3)-(2.7) 
used in the NMM is split into the following 
two subsystems (Janjic et al., 2001; Janjic, 
2003) 
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The time derivatives of the subsystems (7.1)-
(7.3) and (7.4)-(7.5) are denoted by the 
subscripts i and ii, respectively.  The two 
subsystems are solved using different time 
stepping methods.  Note that the splitting is 
not done by separating automatically all the 
advection terms.  Namely, the system with 
subscripts i includes the advection of pressure 
in the omega-alpha term of the 
thermodynamic equation.  The contribution of 
this term compensates the kinetic energy 
production by the pressure gradient force in 
the total energy equation.  As can be readily 
verified, due to the presence of this term, the 
system (7.1)–(7.3), conserves energy.  The 
system (7.4)–(7.5) also conserves energy, 
except for the changes due to the 
redistribution of mass. 
 An economical forward–backward scheme 
(Ames, 1969; Gadd, 1974; Janjic and Wiin–
Nielsen, 1977; Janjic, 1979) has been used for 
the system (7.1)–(7.3).  The properties of the 
scheme used in the model were examined in 
the case of the linearized shallow water 
equations by Janjic and Wiin–Nielsen (1977) 
and Janjic (1979).  Concerning the 
contributions of the horizontal advection 
terms in (7.4)–(7.5), historically, the 
additively split, iterative, first–forward–then–
(slightly off–) centered time differencing 
scheme has been applied with time steps twice 
longer than those used to solve the subsystem 
(7.1)–(7.3) in the HIBU and the Eta models 
(Janjic, 1979).  The Matsuno scheme has been 
used in a similar way for the vertical 
advection terms in (7.4)–(7.5).  This 
combination has worked very well in the 
hydrostatic models on the synoptic scales 
(Janjic et al., 1995).  However, in the 
nonhydrostatic model, two-grid-interval noise 
in time developed with this time stepping 
scheme at high resolutions (Janjic, 2003).  For 
this reason, the two–step iterative scheme for 
horizontal advection has been replaced by the 
Adams–Bashforth scheme using the short time 
step.  The Adams–Bashforth scheme allows 

about the same computational efficiency as 
the two–step, iterative scheme with twice 
longer time steps, and the accuracy is 
improved.  However, somewhat more memory 
is needed in order to store some of the 
variables at the third time level, and the 
physical mode of the Adams–Bashforth 
scheme is weakly unstable.  This instability 
can be tolerated if the time steps are not too 
long, or eliminated by a very slight off-
centering which preserves the second order 
accuracy.  Note that large ratios between the 
advection time step, and the time step used for 
the remaining terms of the equations cannot 
be used in NWP applications.  This ratio is 
restricted to only about 2 on the semi-
staggered grids, where longer short steps can 
be used than those allowed by the CFL 
criterion on the staggered grid C. 
 The trapezoidal scheme for the Coriolis 
force terms has been also replaced by the 
Adams-Bashforth scheme.  The reason for this 
change was the possibility of overestimating 
the amplitude of the divergent part of flow 
with the trapezoidal scheme (Janjic and Wiin-
Nielsen, 1977). 
 For the vertical advection, the Matsuno 
scheme has been replaced in later versions of 
the NMM by the unconditionally stable 
Crank-Nicholson scheme.  Namely, as a 
legacy from the Eta model which required 
very high vertical resolution in order to 
resolve the processes over elevated terrain, the 
NMM is often run with higher vertical 
resolution than necessary with the hybrid 
pressure-sigma coordinate, so that the vertical 
advection sometimes dangerously approaches 
the limit imposed by the CFL criterion. 
 For simplicity, the time differencing has 
been presented using only the hydrostatic part 
of the model dynamics.  The treatment of the 
contribution of the nonhydrostatic dynamics is 
more involved, and more details on the time 
stepping procedures used can be found in 
Janjic et al. (2001) and Janjic (2003).  A 
novelty in the treatment of the nonhydrostatic 
terms is that the iterative method for solving 
the vertical implicit pressure equation 
discussed in Janjic et al. (2001) has been 
replaced by a direct solver.  This modification 
has brought a visible further improvement of 
the computational efficiency of the model.  
Currently, the flux correction passive 



substance transport remains the single most 
expensive part of the model dynamics. 
 
8. THE NONLINEAR DYNAMICS OF 
 THE NMM 
 
 Nastrom and Gage (1985) examined 
measurements made by commercial aircraft 
and found that one-dimensional kinetic energy 
spectra along their flight-paths in the lower 
stratosphere and in the upper troposphere 
follow the –5/3 slope in the range from several 
hundred kilometers to several kilometers.  
Several possible explanations for this spectral 
shape have been proposed (e.g. Gage, 1979; 
Lilly, 1983; Gage and Nastrom, 1986; Tung 
and Orlando, 2003).  They include the 
downscale nonlinear energy cascade and an 
inverse cascade from smaller to larger scales. 
 The statistical properties of atmospheric 
spectra typically are investigated in extended 
integrations (tens or hundreds of days), and 
the spectra are averaged over long periods 
(tens or hundreds of days) in order to ensure 
that statistical equilibrium is reached.  The 
need for extended integrations and long 
averaging periods arise due to the time scale 
of the nonlinear cascade.  In addition, the size 
of integration domain in mesoscale runs is 
typically smaller than the size of the large-
scale atmospheric disturbances that feed the 
downscale nonlinear cascade.  Thus, it appears 
that physical or spurious sources of energy 
other than the downscale nonlinear cascade 
from the large-scale motions are needed in 
order to develop and maintain the –5/3 spectra 
in mesoscale atmospheric models.  Such 
sources may be (a) physically justified 
mesoscale forcing, (b) early collapse of the 
spectrum due to spurious computational 
nonlinear cascade, (c) other small-scale 
computational errors such as the errors due to 
the representation of topography, etc. 
 It should be noted that the WRF NMM 
and the NMM-B are well qualified for 
investigating atmospheric spectra.  They 
conserve energy and enstrophy, which 
generally improves the accuracy of the 
nonlinear dynamics.  In particular, the energy 
and enstrophy conservation controls the 
nonlinear energy cascade and restricts an early 
spurious energy transfer toward smaller scales 
by nonlinear interactions.  The energy 
conservation improves the stability of the 

model and eliminates the need for excessive 
dissipation (either explicit or built into the 
finite-difference schemes) that could affect the 
spectra generated by the model.  In addition, 
the WRF-NMM and the NMM-B use hybrid 
pressure-sigma vertical coordinate, so that, 
except for the errors propagating from below, 
in the upper troposphere and in the 
stratosphere they are free of the sigma 
coordinate errors that are largest at higher 
altitudes.  Finally, explicit formulation of 
major dissipative processes allows precise 
“dosage” of dissipation. 
 The time averaged spectrum over forecast 
hours 36-48 at 300 hPa (blue diamonds) 
obtained in the WRF NMM run in the East 
domain for the case of hurricane Isabel (initial 
data September 17, 18Z, from the Eta data) 
with the resolution of 8 km and 60 levels is 
shown in Fig. 7.  The –3 (purple squares) and 
–5/3 (yellow triangles) slopes are also shown 
for comparison.  As can be seen from the 
figure, the spectrum spun up by the model.  
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Fig. 7.  Time average over 36-48 hours of the 
WRF NMM spectra (blue diamonds) at 300 
hPa in the East domain.  The –3 (purple 
squares) and –5/3 (yellow triangles) slopes are 
shown.  Run starting from 18Z, 09/17/2003 
(Isabel), Eta data, 8 km, 60 levels resolution. 
 
agrees remarkably well with the observed 
Nastrom and Gage (1985) spectrum. 



 The time averaged spectrum over forecast 
hours 36-48 at 300 hPa (blue diamonds) 
obtained in a NMM B run over Atlantic is 
shown in Fig. 8.  The –3 (purple squares) and 
–5/3 (yellow triangles) slopes are again shown 
for comparison.  The NMM B was run using 
the resolution of 15 km in the horizontal and 
32 levels in the vertical in a domain of the  
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Fig. 8.  Time average over 36-48 hours of the 
NMM B spectra (blue diamonds) at 300 hPa 
over Atlantic.  The –3 (pink squares) and –5/3 
(yellow triangles) slopes are shown.  Run 
starting from 12Z, 09/07/2003, GFS data, 15 
km, 32 levels resolution. 
 
same size as the East domain.  As can be seen 
from the figure, an excellent agreement 
between the simulated and the observed 
spectrum was again achieved. 
 As expected on the basis of theoretical 
considerations, the presented results 
demonstrate that the nonlinear dynamics used 
in the NMM have been successful in 
reproducing the observed mesoscale 
atmospheric spectra, even at a rather modest 
resolution of 15 km.  However, whether the 
energy in the small-scale part of the spectrum 
comes from legitimate physical sources is an 
issue that requires further investigation.  In 
other words, there is no guarantee that the 
model produced –5/3 spectrum is generated by 
the same mechanisms as the Nastrom and 

Gage –5/3 spectrum observed in nature.  On 
the positive side, one could argue that the 
nonlinear dynamics still performed well 
generating the –5/3 spectrum no matter what 
was the source of energy. 
 An interesting question is also how the 
NMM nonlinear dynamics reproduce the 
energy spectrum in the case of three-
dimensional turbulence.  In order to address 
this problem, the NMM B was run with 
horizontal resolution of 1 km, and an average 
vertical resolution of about 500 m.  The 
horizontal domain had 112 by 112 points.  
Double periodic boundary conditions were 
specified along the lateral boundaries.  The 
model was initialized with the vertical 
thermodynamic structure of the Fort Sill storm 
of May 20, 1977, and the initial wind field 
was set to zero.  The spectrum of w2 at the 700 
hPa level corresponding to decaying 
turbulence generated by moist convection was 
obtained by averaging the spectra between 
forecast hours 3 and 4.  The time averaged 
spectrum (blue diamonds) is shown in Fig. 9.   
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Fig. 9.  Decaying 3D turbulence.  Time 
average over hours 3-4 of the NMM B spectra 
of w2 (blue diamonds) at 700 hPa in a domain 
with double periodic boundary conditions. 
 
For comparison, the –5/3 slope (yellow 
triangles) is also shown.  As can be seen from 
the figure, the agreement between the 



computed and the theoretical spectrum is 
again almost perfect. 
 
9. OPERATIONAL APPLICATIONS AND 
 EXPERIMENTAL RUNS 
 
 Since July 2002, the NMM has been run 
operationally in NCEP High Resolution 
windows in six nested domains (West, 
Central, East, Alaska, Hawaii, Puerto Rico) 
shown in Fig. 10.  The horizontal resolution is 
8 km for all domains except for the Alaska 
domain where the horizontal resolution is 10 
km.  The model has 60 unequally spaced 
levels in the vertical.  In addition, the model is 
used for fire weather forecasting and other 
purposes on call. 
 

 
Fig. 10.  The six High Resolution Windows: 
West, Central, East, Alaska, Hawaii and 
Puerto Rico embedded into the Eta domain 
(solid black line). 
 
 The model topography is defined as 
unfiltered gridbox means of 30’’ USGS 
Digital Elevation Model data.  Although 
unfiltered topography introduces forcing at the 
smallest resolvable scales that can adversely 
affect e.g. the precipitation forecasts, this 
choice was made hoping that realistic 
topography will result in better forecasts of 
low-level flow. 
 The model does not have its own 
dedicated data assimilation system.  The 
initial and boundary conditions are defined by 
interpolation of the operational Meso (Eta) 
model data.  The Meso (Eta) model is run with 
12 km resolution and 60 levels in the vertical. 
 In the two small domains the model is run 
twice a day (Hawaii cycles 00Z and 12Z, 

Puerto Rico cycles 06Z and 18Z).  In the 
remaining four domains, the model is run once 
a day starting from 00Z (Alaska), 06Z (West), 
12Z (Central) and 18Z (East).  The forecasts 
are computed up to 48 hours. 
 The computational efficiency of the model 
has been very high, and substantially higher 
than the computational efficiency of most 
nonhydrostatic models.  Moreover, further 
significant improvement of the computational 
efficiency of the model is possible.  The 
model has been highly reliable and there have 
been no failures since it began running 
operationally in July 2002. 
 In terms of performance on the synoptic 
scales, generally, the model has been highly 
competitive with mature operational high-
resolution NWP models, despite the fact that it 
has been handicapped by inconsistent initial 
and boundary conditions taken from the Eta 
model, relatively small integration domains, 
and insufficient tuning of the physical 
package.  Thus, although it is difficult to 
compare directly the performance of the 
NMM to that of the Eta model, statistical 
scores and numerous examples (Black et al., 
2002, Janjic et al. 2003) indicate that the 
NMM adds value to the forecasts of the Eta 
model.  This applies particularly to the details 
of the flow over complex terrain. 
 For example, consider the 42 hour 
forecasts of 10 m wind for the Santa Barbara 
area, California, valid at 00Z, February 6, 
2003 that are shown in Fig. 11 (courtesy of 
Tom Black).  The forecast obtained using the 
12 km Eta model is shown in the upper panel, 
and the forecast from the 8 km NMM West 
domain run is shown in the lower panel.  The 
bold arrows represent the observations.  As 
can be seen from the figure, generally, there is 
a much better agreement between the NMM 
forecast and the observations.  In particular, 
the northeast low level jet that turns to east 
and southeast over the ocean in the Oxnard 
area is realistically reproduced in the NMM 
forecast, while it is completely missing in the 
Eta forecast. 
 On the other hand, as shown in Fig. 12 
(courtesy of Eric Rogers), the most dramatic 
differences between the Eta model and the 
NMM can be seen in vertical structures 
developing due to the effects of topography.  
The panels in the column on the left are from 
the 12 km Eta run, and the panels in the 



column on the right are from the NMM 
Eastern domain run.  The middle and bottom 
panels of the two columns represent 12 hour  

 
 

 
 
Fig. 11.  The 42 hour forecasts of 10 m wind 
for the Santa Barbara area, California, valid at 
00UTC, February  6, 2003.  The forecast 
obtained using the 12 km Eta model is shown 
in the upper panel, and the forecast from the 8 
km NMM West domain run is shown in the 
lower panel.  (Courtesy of Tom Black) 
 
and 15 hour forecast cross sections, 
respectively, starting from 18Z, January 7, 
2003.  The cross sections are taken along the 
blue lines in the top panels.  The topography is 
indicated in the top panels by color shading 

with the contours at 100, 175, 250, 375, 500, 
750, 1000, 1250 etc. meters, and by the 
shaded area at the bottom of the cross 
sections.  The blue and brown contour lines 
indicate the negative (upward) and positive 
(downward) vertical velocity dtdp /=ω , 
respectively.  The contour interval is 0.2 Pa s-
1.  The potential temperature is represented by 
the dashed red contour lines with the contour 
interval of 4 degrees.  The background color 
shading in the cross sections represents 
isotachs with the contour interval of 10 Knts. 
 As can be seen from the figure, the 
vertical motions are much stronger in the 
NMM than in the Eta model.  Moreover, the 
wave length of the mountain waves in the 
NMM is much shorter than in the Eta model.  
Also, the effect of vertical transport of 
momentum is visible in bottom panels, 
particularly in the case of the NMM.  In 
addition to resolution, the representation of 
mountains and the nonhydrostatic dynamics 
are believed to have played a role in 
producing so different results. 
 An experimental 12 hour forecast of the 
sea level pressure starting from September 17, 
2003, 12Z is shown in Fig. 13.  This forecast 
covers a part of the life cycle of the tropical 
storm Isabel.  The NCEP GFS data were used 
to specify the initial and boundary conditions 
for the NMM.  As can be seen from Fig. 13, 
the predicted pressure in the center of the 
storm was 951.72 hPa, while the observed 
value at that time was 953 hPa.  The 30 hour 
forecast of the accumulated 3 hour 
precipitation for this case is shown in Fig. 14.  
The landfall occurred at about this forecast 
time, and, as can be seen from Fig. 14, it was 
rather accurately predicted by the model. 
 These examples demonstrate that the 
NMM has the ability to spin up and maintain 
realistically deep tropical storms and to 
predict their track with remarkable accuracy.  
Actually, at the forecast time shown in Fig. 
13, as well as at subsequent forecast times 
(not shown), the predicted tropical cyclone 
was overdeveloped by several hecto Pascals.  
Consistent with the slight overdevelopment of 
the cyclone, the landfall time and the 
subsequent dissipation of the storm were 
somewhat retarded.  This, however, could 
have been expected considering that the NMM 
was run with practically no explicit or implicit 
lateral diffusion or filtering. 



 
 

                  

 

 
 

Fig.  12.  The 12 km Meso (Eta) (left column) and the 8 km NMM Eastern Domain (right 
column) cross sections.  The middle and bottom panels are 12 hour and 15 hour forecasts, 
respectively, starting from 18Z, January 7, 2003.  The cross sections are taken along the blue 
lines in the top panels.  The topography is indicated in the top panels by color shading with the 
contours at 100, 175, 250, 375, 500, 750, 1000, 1250 etc. meters, and by the shaded area at the 
bottom of the cross sections.  The blue and brown contour lines are the negative (upward) and 
positive (downward) values of vertical velocity dtdp /=ω , respectively.  The contour interval is 
0.2Pa s-1.  The dashed red contour lines are potential temperature with the contour interval of 4 
degrees.  The background color shading in the cross sections represents isotachs with the contour 
interval of 10 Knts. (Courtesy of Eric Rogers) 
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Fig.  13.  An experimental 12 hour forecast of 
the sea level pressure starting from September 
17, 2003, 12Z.  The NCEP GFS data were 
used for initial and boundary conditions. 
 

 
 
Fig.  14.  The 30 hour forecast of the 
accumulated 3 hour precipitation indicating 
the location of the landfall.  The forecast 
started at September 17, 2003, 12Z.  The 
NCEP GFS data were used for the initial and 
boundary conditions. 
 
 The example shown in Fig. 15 is from 
NCEP’s experimental runs with 4.5 km 
resolution that are made in support of the 
Storm Prediction Center (SPC) Spring 

Program.  These forecasts are run once a day 
up to 30 hours ahead starting from 00Z data 
with disabled cumulus convection 
parameterization.  The 24 hour forecast of 
accumulated 1 hour precipitation valid at 00Z 
April 21 is shown in the upper panel of Fig. 
15, while the verifying radar reflectivity is 
shown in the lower panel (Courtesy of Jack 
Kain).  As can be seen from the figure, the 
predicted precipitation pattern and timing 
were remarkably similar to the verification. 
 

 
 

 
 
Fig. 15.  The 24 hour forecast of accumulated 
1 hour precipitation valid at 00Z April 21 
(upper panel) and verifying radar reflectivity 
(lower panel).  (Courtesy of Jack Kain) 
 
 Finally, results of a recent diagnostic study 
(http://www-ad.fsl.noaa.gov/fvb/rtvs/wrf/retro_runs/) 
inspire interesting considerations regarding 
ensemble forecasting and relative importance 
of various parts of model formulation for 
forecasting basic dynamical variables on 
larger scales.  Namely, the vector wind RMS 

http://www-ad.fsl.noaa.gov/fvb/rtvs/wrf/retro_runs/


errors at standard pressure levels averaged 
over one month of forecasts over the Alaska 
domain are shown in Fig. 16 for two 
dynamical cores run with two different 
physical packages.  The two dynamical cores 
are denoted by WRF NMM and Other, and the 
two physical packages are denoted by Phys1 
and Phys2, respectively.  The scores are 
computed against observations using the 
NCEP standard verification package.  As can 
be seen from the figure, the blue and red lines 
corresponding to the errors of the Other 
dynamical core run with the physical packages 
Phys1 and Phys2 cluster together, and so do 
the black and gray lines corresponding to the 
errors of the WRF NMM dynamical core run 
with the two physical packages.  Apparently, 
in this case the clustering occurs primarily by 
the dynamical cores, and not by the physical 

packages.  Such clustering indicates that it is 
important to use different dynamical cores in 
ensemble forecasting systems. 
 Similarly, the vector wind RMS errors at 
standard pressure levels averaged over one 
month of forecasts over the West domain are 
shown in Fig. 17 for the two dynamical cores 
and the two physical packages.  In addition, 
the RMS errors of the Eta model are included 
in the plot.  Namely, the topography certainly 
plays an important role in the West domain, 
and it is interesting to see whether and how 
much the method used to represent the 
topography affects the clustering of the errors.  
As before, the scores are computed against 
observations using the NCEP standard 
verification package.  As can be seen from 
Fig. 17, the results again cluster primarily by 
the dynamical cores.  The blue and red lines 

 

Fig. 16.  Vector wind RMS errors at standard pressure levels averaged o
forecasts for two dynamical cores run with two different physical packa
domain. 
 

Fig. 17.  Vector wind RMS errors at standard pressure levels averaged o
forecasts for two dynamical cores run with two different physical packa
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corresponding to the Other dynamical core 
cluster together, and so do the black and gray 
lines corresponding to the WRF NMM core.  
However, the Eta errors join the WRF NMM 
core in this domain, indicating that on larger 
scales more fundamental differences in the 
discretization between the Other core and the 
WRF NMM core are more important for 
forecasting basic dynamical variables in the 
free atmosphere than the method used to 
represent the topography.  Of course, as 
indicated also by some of the preceding 
examples, the situation is quite different with 
forecasting the details of the flow over 
complex terrain, or precipitation and near 
surface variables.  In the latter case, the 
representation of topography and the physical 
parameterizations are certainly of utmost 
importance. 
 
10.  SOME RECENT WORK 
 
 The convection schemes deserve special 
attention because of their large impact on 
precipitation forecasts, and because of 
concerns about the validity of the assumptions 
built into their design at the currently used 
transitional horizontal resolutions.  Another 
issue related to precipitation is that the success 
of precipitation forecasts has been measured 
mainly by the equitable threat and bias scores 
at NCEP, and the equitable threat score favors 
precipitation forecasts that are considered too 
smooth by some users.  For this reason, 
producing heavier precipitation with more 
small-scale details is now considered 
desirable, even if it would result in somewhat 
lower threat scores.  The current work on the 
convection attempts to address both of these 
issues, i.e., the applicability of the convection 
parameterization at the transitional 
resolutions, and the lack of details in the 
precipitation forecasts. 
 In the deep convection part of the Betts-
Miller-Janjic (BMJ) scheme, Janjic (1994) 
extended the Betts-Miller (Betts 1986) deep 
convection parameterization (i) by introducing 
a nondimensional parameter representative of 
the convective regime, and (ii) by assuming 
that the reference profiles and the relaxation 
time depend on this parameter.  Janjic (1994) 
defined this parameter by  
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is the mean temperature of the cloud.  The 
symbols p , T  and  represent pressure 
temperature and specific humidity, and the 
summation is performed from the cloud base 
to the cloud top. 

q

 In the Janjic (1994) deep convection 
scheme the equilibrium temperature and 
moisture profiles vary between universal 
heavy convection profiles based on the Betts 
(1986) profiles, and the moist adiabat 
depending on the cloud efficiency.  When 

, and consequently S∆ E , tend to zero, the 
profiles approach the moist adiabat.  In case of 
large entropy changes the relaxation toward 
the reference profiles is faster than in the case 
of more stable stratification closer to the moist 
adiabat (Janjic, 1994). 
 In a recent upgrade of the deep convection 
algorithm, an attempt was made to improve 
the transition between the convection and the 
grid-scale precipitation depending on 
horizontal resolution.  Namely, the entropy 
change measures the stabilization of the 
convective column.  Thus, if the threshold for 
entropy change needed for the onset of the 
deep convection is increased with increased 
horizontal resolution, the instabilities that 
were handled by the parameterization of 
convection at coarser resolutions will be 
treated explicitly at higher resolutions.  This 
modification brought a significant 
improvement concerning the small-scale 
structure of precipitation forecasts.  However,  



Fig.  18.  The operational 24 hour forecast of 
the 24 hour accumulated precipitation in the 
Central domain valid at 12Z, February 06, 
2004 (top panel), forecast with the modified 
BMJ scheme (middle panel), and the 
verification analysis ( bottom panel). 
 

taking into account the entrainment during the 
ascent of the buoyant particle used to estimate 
the location of the cloud top proved most 
effective in producing the desired heavy 
precipitation amounts in the forecast.  In 
addition to these changes, more accurate 
iterative computation of cloud efficiency has 
been introduced. 
 The impact of the described changes is 
illustrated in Fig.  18.  The operational 24 
hour forecast of the 24 hour accumulated 
precipitation in the Central domain valid at 
12Z, February 06, 2004, is shown in the top 
panel.  The forecast with the modified BMJ 
scheme is in the middle panel, and the 
verifying precipitation analysis is in the 
bottom panel.  As can be seen from the figure, 
more small scale structure, and a considerably 
better agreement with the analyzed 
precipitation amount is obtained using the 
modified convection. 
 
11. CONCLUSIONS 
 
 The NCEP nonhydrostatic mesoscale 
model (NMM) (Janjic et al., 2001; Janjic, 
2003) has been formulated building on the 
experiences of high resolution hydrostatic 
numerical weather forecasting.  In this way, 
the favorable features of hydrostatic model 
formulation are preserved in the range of 
validity of the hydrostatic approximation. 
 The basic idea applied was to split the 
system of the nonhydrostatic equations into 
two parts: (a) the part that corresponds 
basically to the hydrostatic system, except for 
higher order corrections due to the vertical 
acceleration, and (b) the system of equations 
that allows computation of the corrections 
appearing in the first system due to the 
vertical acceleration.  This procedure does not 
require any linearization or additional 
approximation. 
 The nonhydrostatic dynamics is 
introduced through an add–on module.  The 
separation of the nonhydrostatic contributions 
shows in a transparent way where, how, and to 
what extent relaxing the hydrostatic 
approximation affects the familiar hydrostatic 
equations.  The nonhydrostatic module can be 
turned on and off, so that the same model can 
be run in both hydrostatic and nonhydrostatic 
modes.  This allows easy comparison of 
hydrostatic and nonhydrostatic solutions of 



otherwise identical model.  This feature also 
allows that the model be run in the hydrostatic 
mode at lower resolutions with no extra cost.  
This is an advantage in case of models 
designed for a wide range of horizontal 
resolutions, and in particular for unified global 
and regional forecasting systems. 
 At very high resolutions, a two-
dimensional version of the model successfully 
reproduced the classical nonhydrostatic 
solutions (Janjic et al., 2001).  Although such 
resolutions will not be affordable in NWP 
applications in the near future, it was 
necessary to pass these tests in order to 
demonstrate the soundness of the formulation. 
 The extra computational cost due to the 
nonhydrostatic extension is of the order of 
20% of the cost of the hydrostatic dynamics.  
The relatively low cost of the nonhydrostatic 
dynamics justifies the application of the 
nonhydrostatic model even at medium 
resolutions.  Compared to the hydrostatic 
version of the model, no additional 
computational boundary conditions at the top 
have been needed in real data runs in a wide 
range of horizontal resolutions. 
 The nonlinear dynamics of the NMM 
model demonstrated the ability to reproduce 
the observed atmospheric spectrum (Nastrom 
and Gage, 1985).  Moreover, at higher 
resolution, the NMM successfully reproduced 
the theoretical spectrum in the case of 
decaying three-dimensional turbulence excited 
by moist convection. 
 The NMM has become operational at 
NCEP in July of 2002 and has demonstrated a 
high level of skill.  In real data runs, it does 
not require additional computational boundary 
conditions at the top. 
 Despite of application of sophisticated 
numerical methods, the computational 
efficiency of the model has been very high, 
and substantially higher than the 
computational efficiency of most established 
nonhydrostatic models.  Moreover, further 
significant improvement of the computational 
efficiency of the model is possible.  This will 
allow further increase of the resolution and 
application of more sophisticated physical 
parameterizations.  The model has been highly 
reliable and there has been no failures since 
the operations started. 
 In terms of performance on the synoptic 
scales, generally, the model has been highly 

competitive with mature high-resolution NWP 
models, despite the fact that it has been 
handicapped by inconsistent initial and 
boundary conditions, relatively small 
integration domain, and almost no retuning of 
the physical parameterizations.  The model 
demonstrated ability to add value to the 
forecasts produced by the driving model (the 
Eta model). 
 More significant differences between the 
NMM and the NCEP hydrostatic high 
resolution Eta model can be seen on smaller 
scales.  The differences are particularly 
striking in mesoscale vertical structures 
developed by the two models. 
 Although the initial results have been very 
encouraging, further efforts are needed in 
order to develop full potentials of the model.  
This applies primarily to retuning of the 
physical parameterizations. 
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